Semidefinite programming approach for the quadratic assignment problem with a sparse graph

نویسندگان

  • José F. S. Bravo Ferreira
  • Yuehaw Khoo
  • Amit Singer
چکیده

The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension n where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension O(n) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Augmented Direction Method of Multipliers (ADMM) in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension O(n). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy (NMR) to tackle the assignment problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, 235(1):25-42, 2000]...

متن کامل

A recipe for semidefinite relaxation for (0, 1)-quadratic programming - In memory of Svata Poljak

We review various relaxations of (0,1)-quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way...

متن کامل

Semidefinite relaxations of the quadratic assignment problem in a Lagrangian framework

In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

On bounding the bandwidth of graphs with symmetry

We derive a new lower bound for the bandwidth of a graph that is based on a new lower bound for the minimum cut problem. Our new semidefinite programming relaxation of the minimum cut problem is obtained by strengthening the known semidefinite programming relaxation for the quadratic assignment problem (or for the graph partition problem) by fixing two vertices in the graph; one on each side of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2018